Formulations of Anselm’s ontological argument have been the subject of a number of recent studies. We examine these studies in light of Anselm’s text and (a) respond to criticisms that have surfaced in reaction to our earlier representations of the argument, (b) identify and defend a more refined representation of Anselm’s argument on the basis of new research, and (c) compare our representation of the argument, which analyzes that than which none greater can be conceived as a definite description, to a representation that analyzes it as an arbitrary name.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
[St. Anselm.] Proslogion. In: Schmitt, F. S. (ed.), 1946. Opera Omnia. Vol. 1. Edinburgh: Thomas Nelson and Sons, 89–122. Reprint: 1984. Stuttgart: Frommann-Holzboog.
[St. Anselm.] The Major Works. Davies, B. & Evans, G. R. (eds.), 2008. Oxford: Oxford University Press.
Belnap, N. 1993. On Rigorous Definitions. Philosophical Studies 72(2–3), 115–146.
Betz, G. 2010. Petitio Principii and Circular Argumentation as Seen From a Theory of Dialectical Structures. Synthese 175(3), 327–349.
Blumson, B. 2017. Anselm’s God in Ιsabelle/HOL. Archive of Formal Proofs. URL: <http://isa-afp.org/entries/AnselmGod.html>.
Campbell, R. 2018. Rethinking Anselm’s Arguments: A Vindication of his Proof of the Existence of God. Leiden: Brill.
Dudman, V. H. 1973. Frege on Definition. Mind 83(328), 609–610.
Eder, G. & Ramharter, E. 2015. Formal Reconstructions of St. Anselm’s Ontological Argument. Synthese 192(9), 2795–2825.
Enderton, H. 2001. A Mathematical Ιntroduction to Logic. San Diego: Harcourt.
Fogelin, R. 1987. Understanding Arguments. New York: Harcourt Brace Jovanovich.
Frege, G. 1879. Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a. S.: Louis Nebert.
Frege, G. 1903a, Grundgesetze der Arithmetik, Volume 11, Jena: Verlag Hermann Pohle.
Frege, G. 1903b. Über die Grundlagen der Geometrie (First Series). Jahresbericht der Deutschen Mathematiker-Vereinigung 12, 319–324 (Part Ι), 368–375 (Part ΙΙ).
Frege, G. 1914. Über Logik in der Mathematik, unpublished lecture note. In: Hermes, H., Kambartel, F. & Kaulbach, F. (eds.), 1969. Gottlob Frege: Nachgelassene Schriften. Vol. 1. Hamburg: Meiner.
Garbacz, P. 2012. PROVER9’s Simplification Explained Away. Australasian Journal of Philosophy 90(3), 585–592.
Gupta, A. 2019. Definitions. In: Zalta, E. N. (ed.). The Stanford Encyclopedia of Philosophy (Winter 2019 Edition). URL: <http://plato.stanford.edu/archives/win2019/entries/definitions/>.
Hamblin, C. 1970. Fallacies. London: Methuen.
Hazlett, A. 2006. Epistemic Conceptions of Begging the Question. Erkenntnis 65(3), 343–363.
Hodges, W. 2008, Tarski’s Theory of Definitions. In: Patterson, D. (ed.), New Essays on Tarski and Philosophy. Oxford: Oxford University Press, 94–132.
Ιacona, A. & Marconi, D. 2005. Petitio Principii: What’s Wrong? Facta Philosophica 7(1), 19–34.
Jackson, F. 1984. Petitio and the Purpose of Arguing. Pacific Philosophical Quarterly 65(1), 26–36.
Mates, B. 1972. Elementary Logic, 2nd edition. Oxford: Oxford University Press.
Moran, D. 2004. Neoplatonic and Negative Theological Elements in Anselm’s Argument for the Existence of God in Proslogion. In: Narbonne, J.-M. & Reckermann, A. (eds.), Pensées de l’un dans l’Histoire de la Philoosphie. Études en Hommage au Professor Werner Beierwaltes. Paris: Vrin, 198–229.
Oppenheimer, P. E. & Zalta, E. N. 1991. On the Logic of the Ontological Argument. Philosophical Perspectives 5, 509–529. Reprint: 1993. The Philosopher’s Annual 1991XIV, 255–275.
Oppenheimer, P. E. & Zalta, E. N. 2007. Reflections on the Logic of the Ontological Argument. Studia Neoaristotelica 4(1), 28–35.
Oppenheimer, P. E. & Zalta, E. N. 2011. A Computationally-Discovered Simplification of the Ontological Argument. Australasian Journal of Philosophy 89(2), 333–349.
Padoa, A. 1900. Logical Introduction to Any Deductive Theory. In: van Heijenoort, J. (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press, 119–123.
Parent, T. 2015. On the PROVER9 Ontological Argument. Philosophia 43, 475–483.
Rogers, K. A. 1997. The Neoplatonic Metaphysics and Epistemology of Anselm of Canterbury. Lewiston, NY: Edwin Mellen Press.
Rushby, J. 2013. (m.s.). The Ontological Argument in PVS. URL: <http://www.csl.sri.com/users/rushby/papers/ontological.pdf>.
Rushby, J. 2016 (m.s.). Mechanized Analysis of a Formalization of Anselm’s Ontological Argument by Eder and Ramharter. CSL Technical Report, 11 February 2016, SRI International. URL: <http://www.csl.sri.com/users/rushby/papers/er-ontarg.pdf>.
Rushby, J. 2018. A Mechanically Assisted Examination of Begging the Question in Anselm’s Ontological Argument. Journal of Applied Logics 5(7), 1473–1496.
Sgaravatti, D. 2013. Petitio Principii: A Bad Form of Reasoning. Mind 122(487), 749–779.
Suppes, P. 1957. Ιntroduction to Logic. Princeton: Van Nostrand.
Šuster, D. 2020. Begging the Question – Proper Justification or Proper Conversation? AnαliZA, 24(1), 37–51.
Walton, D. N. 1994. Begging the Question as a Pragmatic Fallacy. Synthese 100(1), 95–131.
Zalta, E. N. 1983. Abstract Objects: An Ιntroduction to Axiomatic Metaphysics. Dordrecht: D. Reidel.
Zalta, E. N. 1988. Ιntensional Logic and the Metaphysics of Ιntentionality. Cambridge, MA: MIT Press.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 438 | 438 | 58 |
Full Text Views | 10 | 10 | 1 |
PDF Views & Downloads | 29 | 29 | 2 |
Formulations of Anselm’s ontological argument have been the subject of a number of recent studies. We examine these studies in light of Anselm’s text and (a) respond to criticisms that have surfaced in reaction to our earlier representations of the argument, (b) identify and defend a more refined representation of Anselm’s argument on the basis of new research, and (c) compare our representation of the argument, which analyzes that than which none greater can be conceived as a definite description, to a representation that analyzes it as an arbitrary name.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 438 | 438 | 58 |
Full Text Views | 10 | 10 | 1 |
PDF Views & Downloads | 29 | 29 | 2 |